Решения проблемы загрязнения тяжелыми металлами. Тяжелые металлы – наиболее опасные элементы, способные загрязнять почву. Источники загрязнения окружающей среды

Загрязнение почв тяжелыми металлами имеет разные источники:

  • 1. отходы металлообрабатывающей промышленности;
  • 2. промышленные выбросы;
  • 3. продукты сгорания топлива;
  • 4. автомобильные выхлопы отработанных газов;
  • 5. средства химизации сельского хозяйства

Загрязнение почв в результате, как природных факторов, так и главным образом антропогенных источников не только изменяет ход почвообразовательных процессов, что приводит к снижению урожая, ослабляет самоочищение почв от вредных организмов, но и оказывает прямое или косвенное (через растения, растительные или животные продукты питания) влияние. Тяжелые металлы, поступая из почвы в растения, передаваясь по цепям питания, оказывают токсическое действие на растения, животных и на здоровье человека.

Тяжёлые металлы по степени токсического действия на окружающую среду подразделяются на три класса опасности:1. As, Cd, Hg, Pb, Se, Zn, Ti;

  • 2. Co, Ni, Mo, Cu, So, Cr;
  • 3. Bar, V, W, Mn, Sr.

Влияние загрязнения на урожайность сельскохозяйственных культур и качество продукции.

Нарушения, происходящие в растительных организмах под действием избытка тяжёлых металлов, приводят к изменению урожайности и качества растениеводческой продукции (в первую очередь за счёт увеличения содержания самих металлов. Проведение мероприятий по санации загрязнённых тяжелыми металлами почв само по себе не может гарантировать получение высоких урожаев экологически безопасной сельскохозяйственной продукции. Подвижность тяжелых металлов и доступность их для растений в значительной степени контролируются такими свойствами почв как кислотно-щелочные условия, окислительно-восстановительные режимы, содержание гумуса, гранулометрический состав и связанная с ними емкость поглощения. Поэтому прежде чем переходить к разработке конкретных мероприятий по восстановлению плодородия загрязненных почв, необходимо определить критерии их классификации по опасности загрязнения тяжелых металлов, базирующиеся на совокупности физико-химических свойств. При высоких уровнях загрязнения почв тяжелыми металлами урожайность сельскохозяйственных культур резко падает.

В почвах токсичные уровни загрязняющих веществ медленно накапливаются, но зато долго в ней сохраняются, негативно влияя на экологическую обстановку целых регионов. Почвы загрязнённые тяжёлыми металлами и радионуклидами очистить практически невозможно. Пока известен единственный путь: засеять такие почвы быстрорастущими культурами, дающими большую зелёную массу; такие культуры извлекают из почвы токсичные элементы, а затем собранный урожай подлежит уничтожению. Но это довольно длительная и дорогостоящая процедура. Можно снизить подвижность токсичных соединений и поступление их в растения, если повысить рН почв известкованием или добавлять большие дозы органических веществ, например торфа. Неплохой эффект может дать глубокая вспашка, когда верхний загрязнённый слой почвы при вспашке опускают на глубину 50-70 см, а глубокие слои почвы поднимают на поверхность. Для этого можно воспользоваться специальными многоярусными плугами, но при этом глубокие слои всё равно остаются загрязнёнными. Наконец, на загрязнённых тяжёлыми металлами (но не радионуклидами) почвах можно выращивать культуры, не используемые в качестве продовольствия или кормов, например цветы. С 1993 г. на территории РБ осуществляется агроэкологический мониторинг за основными токсикантами окружающей среды - тяжелыми металлами, пестицидами и радионуклидами. На территории района, в котором находится хозяйство, превышение ПДК тяжелыми металлами выявлено не было.

Почва – это поверхность земли, имеющая свойства, которые характеризуют как живую, так и неживую природу.

Почва является индикатором общей . Загрязнения поступают в почву с атмосферными осадками, поверхностными отходами. Также они вносятся в почвенный слой почвенными породами и подземными водами.

К группе тяжелых металлов относятся все с плотностью, превышающей плотность железа. Парадокс этих элементов состоит в том, что в определенных количествах они необходимы для обеспечения нормальной жизнедеятельности растений и организмов.

Но их избыток может привести к тяжелым заболеваниям и даже гибели. Пищевой круговорот становится причиной того, что вредные соединения попадают в организм человека и часто наносят огромный вред здоровью.

Источники загрязнения тяжелыми металлами – это . Существует методика, по которой рассчитывается допустимая норма содержания металлов. При этом учитывается суммарная величина нескольких металлов Zc.

  • допустимая;
  • умеренно опасная;
  • высоко-опасная;
  • чрезвычайно опасная.

Очень важна охрана почв. Постоянный контроль и мониторинг не позволяет выращивать сельскохозяйственную продукцию и вести выпас скота на загрязненных землях.

Тяжелые металлы, загрязняющие почву

Существует три класса опасности тяжелых металлов. Всемирная организация здравоохранения самыми опасными считает заражение свинцом, ртутью и кадмием. Но не менее вредна и высокая концентрация остальных элементов.

Ртуть

Загрязнение почвы ртутью происходит с попаданием в нее пестицидов, различных бытовых отходов, например люминесцентных ламп, элементов испорченных измерительных приборов.

По официальным данным годовой выброс ртути составляет более пяти тысяч тонн. Ртуть может поступать в организм человека из загрязненной почвы.

Если это происходит регулярно, могут возникнуть тяжелые расстройства работы многих органов, в том числе страдает и нервная система.

При ненадлежащем лечении возможен летальный исход.

Свинец

Очень опасным для человека и всех живых организмов является свинец.

Он чрезвычайно токсичен. При добыче одной тонны свинца двадцать пять килограммов попадает в окружающую среду. Большое количество свинца поступает в почву с выделением выхлопных газов.

Зона загрязнения почвы вдоль трасс составляет свыше двухсот метров вокруг. Попадая в почву, свинец поглощается растениями, которые употребляют в пищу человек и животные, в том числе и скот, мясо которого также присутствует в нашем меню. От избытка свинца поражается центральная нервная система, головной мозг, печень и почки. Он опасен своим канцерогенным и мутагенным действием.

Кадмий

Огромной опасностью для организма человека является загрязнение почвы кадмием. Попадая в пищу, он вызывает деформацию скелета, остановку роста у детей и сильные боли в спине.

Медь и цинк

Высокая концентрация в почве этих элементов становится причиной того, что замедляется рост и ухудшается плодоношение растений, что приводит в конечном итоге к резкому уменьшению урожайности. У человека происходят изменения в мозге, печени и поджелудочной железе.

Молибден

Избыток молибдена вызывает подагру и поражения нервной системы.

Опасность тяжелых металлов заключается в том, что они плохо выводятся из организма, накапливаются в нем. Они могут образовывать очень токсичные соединения, легко переходят из одной среды в другую, не разлагаются. При этом они вызывают тяжелейшие заболевания, приводящие часто к необратимым последствиям.

Сурьма

Присутствует в некоторых рудах.

Входит в состав сплавов, используемых в различных производственных сферах.

Ее избыток вызывает тяжелые пищевые расстройства.

Мышьяк

Основным источником загрязнения почвы мышьяком являются вещества, с помощью которых борются с вредителями сельскохозяйственных растений, например гербициды, инсектициды. Мышьяк – это накапливающийся яд, вызывающий хронические . Его соединения провоцируют заболевания нервной системы, мозга, кожных покровов.

Марганец

В почве и растениях наблюдается высокое содержание этого элемента.

При попадании в почву дополнительного количества марганца быстро создается его опасный избыток. На организме человека это сказывается в виде разрушения нервной системы.

Не менее опасен переизбыток и остальных тяжелых элементов.

Из вышесказанного можно сделать вывод, что накопление тяжелых металлов в почве влечет за собой тяжелые последствия для состояния здоровья человека и окружающей среды в целом.

Основные методы борьбы с загрязнением почв тяжелыми металлами

Методы борьбы с загрязнением почвы тяжелыми металлами могут быть физическими, химическими и биологическими. Среди них можно выделить следующие способы:

  • Увеличение кислотности почвы повышает возможность Поэтому внесение органических веществ и глины, известкование помогают в какой-то мере в борьбе с загрязнением.
  • Посев, скашивание и удаление с поверхности почвы некоторых растений, например клевера, существенно снижает концентрацию тяжелых металлов в почве. К тому же данный способ является совершенно экологичным.
  • Проведение детоксикации подземных вод, ее откачивание и очистка.
  • Прогнозирование и устранение миграции растворимой формы тяжелых металлов.
  • В некоторых особо тяжелых случаях требуется полное снятие почвенного слоя и замена его новым.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Промышленная экология и безопасность»

«Проблемы загрязнения почв тяжелыми металлами и возможные пути их решения»

Выполнил:

Фомин А., Мельников Д., Ламажап А.

студенты гр. ТБ-161

Проверил:

Холкин Е.Г., к.т.н

  • Введение
  • Заключение
  • Список литературы
  • Введение
  • Почва является бесценным природным богатством, обеспечивающим человека необходимыми продовольственными ресурсами. Ничто не может заменить почвенный покров: без этого колоссального природного объекта невозможна жизнь на земле. Вместе с тем сегодня можно наблюдать неправильное использование почвы, что приводит к росту её загрязнения и, как следствие, снижению её плодородных свойств. Уже сейчас человечество должно серьёзно задуматься над проблемой загрязнения почвы и принять необходимые меры по её защите.
  • Почва является индикатором общей техногенной обстановки. Загрязнения поступают в почву с атмосферными осадками, поверхностными отходами. Также они вносятся в почвенный слой почвенными породами и подземными водами. К группе тяжелых металлов относятся все цветные металлы с плотностью, превышающей плотность железа. Парадокс этих элементов состоит в том, что в определенных количествах они необходимы для обеспечения нормальной жизнедеятельности растений и организмов.
  • Но их избыток может привести к тяжелым заболеваниям и даже гибели. Пищевой круговорот становится причиной того, что вредные соединения попадают в организм человека и часто наносят огромный вред здоровью. Источники загрязнения тяжелыми металлами -- это промышленные предприятия.
  • Очень важна охрана почв. Постоянный контроль и мониторинг не позволяет выращивать сельскохозяйственную продукцию и вести выпас скота на загрязненных землях.
  • Цель работы - рассмотреть проблемы загрязнения почв тяжелыми металлами и возможные пути их решения.
  • 1. Загрязнение почв тяжелыми металлами
  • Тяжелые металлы (ТМ) уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы. В перспективе они могут стать более опасными, чем отходы атомных электростанций и твердые отходы. Загрязнение ТМ связано с их широким использованием в промышленном производстве. В связи с несовершенными системами очистки ТМ попадают в окружающую среду, в том числе и в почву, загрязняя и отравляя ее. ТМ относятся к особым загрязняющим веществам, наблюдения за которыми обязательны во всех средах .
  • Почва является основной средой, в которую попадают ТМ, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из нее в Мировой океан.
  • Из почвы ТМ усваиваются растениями, которые затем попадают в пищу.
  • Термин «тяжелые металлы», характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы.
  • В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 элементов периодической системы Д.И. Менделеева с атомной массой свыше 40 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. По классификации Н. Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов .
  • Самыми мощными поставщиками отходов, обогащенных металлами, являются предприятия по выплавке цветных металлов (алюминиевые, глиноземные, медно-цинковые, свинцово-плавильные, никелевые, титаномагниевые, ртутные и др.), а также по переработке цветных металлов (радиотехнические, электротехнические, приборостроительные, гальванические и пр.).
  • В пыли металлургических производств, заводов по переработке руд концентрация Pb, Zn, Bi, Sn может быть повышена по сравнению с литосферой на несколько порядков (до 10-12), концентрация Cd, V, Sb - в десятки тысяч раз, Cd, Mo, Pb, Sn, Zn, Bi, Ag - в сотни раз. Отходы предприятий цветной металлургии, заводов лакокрасочной промышленности и железобетонных конструкций обогащены ртутью. В пыли машиностроительных заводов повышена концентрация W, Cd, Pb (табл. 1).
  • Таблица 1. Основные техногенные источники тяжелых металлов
    • Под влиянием обогащенных металлами выбросов формируются ареалы загрязнения ландшафта преимущественно на региональном и локальном уровнях. Влияние предприятий энергетики на загрязнение окружающей среды обусловлено не концентрацией металлов в отходах, а их огромным количеством. Масса отходов, например, в промышленных центрах, превышает их суммарное количество, поступающее от всех других источников загрязнения. С выхлопными газами автомобилей в окружающую среду выбрасывается значительное количество Pb, которое превышает его поступление с отходами металлургических предприятий.
    • Пахотные почвы загрязняются такими элементами как Hg, As, Pb, Cu, Sn, Bi, которые попадают в почву в составе ядохимикатов, биоцидов, стимуляторов роста растений, структурообразователей. Нетрадиционные удобрения, изготовляемые из различных отходов, часто содержат большой набор загрязняющих веществ с высокими концентрациями. Из традиционных минеральных удобрений фосфорные удобрения содержат примеси Mn, Zn, Ni, Cr, Pb, Cu, Cd .
    • Распределение в ландшафте металлов, поступивших в атмосферу из техногенных источников, определяется расстоянием от источника загрязнения, климатическими условиями (сила и направление ветров), рельефом местности, технологическими факторами (состояние отходов, способ поступления отходов в окружающую среду, высота труб предприятий).
    • Рассеивание ТМ зависит от высоты источника выбросов в атмосферу. Согласно расчетам М.Е. Берлянда, при высоких дымовых трубах значительная концентрация выбросов создается в приземном слое атмосферы на расстоянии 10-40 высот трубы. Вокруг таких источников загрязнения выделяются 6 зон (табл. 2). Площадь воздействия отдельных промышленных предприятий на прилегающую территорию может достигать 1000 км2 .
    • Таблица 2. Зоны загрязнения почв вокруг точечных источников загрязнения
    • Расстояние от источника загрязнения в км

      Превышение содержания ТМ по отношению к фоновому

      Охранная зона предприятия

      • Зоны загрязнения почв и их размер тесно связаны с векторами господствующих ветров. Рельеф, растительность, городские постройки могут изменять направление и скорость движения приземного слоя воздуха. Аналогично зонам загрязнения почв можно выделить и зоны загрязнения растительного покрова.
      • 2. Миграция тяжелых металлов в почвенном профиле
      • Аккумуляция основной части загрязняющих веществ наблюдается преимущественно в гумусово-аккумулятивном почвенном горизонте, где они связываются алюмосиликатами, несиликатными минералами, органическими веществами за счет различных реакций взаимодействия. Состав и количество удерживаемых в почве элементов зависят от содержания и состава гумуса, кислотно-основных и окислительно-восстановительных условий, сорбционной способности, интенсивности биологического поглощения. Часть тяжелых металлов удерживается этими компонентами прочно и не только не участвует в миграции по почвенному профилю, но и не представляет опасности для живых организмов. Отрицательные экологические последствия загрязнения почв связаны с подвижными соединениями металлов .
      • В пределах почвенного профиля техногенный поток веществ встречает ряд почвенно-геохимических барьеров. К ним относятся карбонатные, гипсовые, иллювиальные горизонты (иллювиально-железисто-гумусовые). Часть высокотоксичных элементов может переходить в труднодоступные для растений соединения, другие элементы, мобильные в данной почвенно-геохимической обстановке, могут мигрировать в почвенной толще, представляя потенциальную опасность для биоты. Подвижность элементов в значительной степени зависит от кислотно-основных и окислительно-восстановительных условий в почвах. В нейтральных почвах подвижны соединения Zn, V, As, Se, которые могут выщелачиваться при сезонном промачивании почв.
      • Накопление подвижных, особо опасных для организмов соединений элементов зависит от водного и воздушного режимов почв: наименьшая аккумуляция их наблюдается в водопроницаемых почвах промывного режима, увеличивается она в почвах с непромывным режимом и максимальна в почвах с выпотным режимом. При испарительной концентрации и щелочной реакции в почве могут накапливаться Se, As, V в легкодоступной форме, а в условиях восстановительной среды - Hg в виде метилированных соединений.
      • Однако следует иметь в виду, что в условиях промывного режима потенциальная подвижность металлов реализуется, и они могут быть вынесены за пределы почвенного профиля, являясь источниками вторичного загрязнения подземных вод.
      • В кислых почвах с преобладанием окислительных условий (почвы подзолистого ряда, хорошо дренированные) такие тяжелые металлы, как Cd и Hg, образуют легкоподвижные формы. Напротив, Pb, As, Se образуют малоподвижные соединения, способные накапливаться в гумусовых и иллювиальных горизонтах и негативно влиять на состояние почвенной биоты. Если в составе загрязняющих веществ присутствует S, в восстановительных условиях создается вторичная сероводородная среда и многие металлы образуют нерастворимые или слаборастворимые сульфиды.
      • В заболоченных почвах Mo, V, As, Se присутствуют в малоподвижных формах. Значительная часть элементов в кислых заболоченных почвах присутствует в относительно подвижных и опасных для живого вещества формах; таковы соединения Pb, Cr, Ni, Co, Cu, Zn, Cd и Hg. В слабокислых и нейтральных почвах с хорошей аэрацией образуются труднорастворимые соединения Pb, особенно при известковании. В нейтральных почвах подвижны соединения Zn, V, As, Se, а Cd и Hg могут задерживаться в гумусовом и иллювиальных горизонтах. По мере возрастания щелочности опасность загрязнения почв перечисленными элементами увеличивается .
      • 3. Направления борьбы с загрязнением почв тяжелыми металлами
      • 3.1 Проведение почвенного мониторинга состояния почвы
      • Среди контролируемых показателей состояния почв различают две группы: педохимические и биохимические. К педохимическим показателям относят те свойства почв, изменение которых может быть вызвано загрязняющими веществами и которые могут отрицательно влиять на живые организмы. К педохимическим относятся показатели важнейших химических свойств почв: гумусного состояния, кислотно-основных и катионнообменных свойств, в отдельных случаях окислительно-восстановительных свойств почв.
      • К биохимическим относят показатели, характеризующие аккумуляцию в почвах загрязняющих веществ и их непосредственного негативного влияния на живые организмы. К группе биохимических показателей относятся: 1) общее содержание загрязняющих веществ, 2) содержание соединений загрязняющих веществ, обладающих реальной и потенциальной подвижностью .
      • Показатели общего (валового) содержания контролируемых элементов как природного, так и техногенного происхождения характеризуют их запас в почвах (табл. 3). Определение общего содержания химических элементов в почвах трудоемко и требует полного разложения алюмосиликатов, удерживающих значительную часть соединений, особенно в незагрязненных почвах (сплавление пробы, разложение кислотами с участием плавиковой кислоты).
      • При оценке состояния загрязненных почв общее содержание химических элементов является показателем менее информативным. Существует достаточно много данных о природном уровне общего содержания тяжелых металлов (Hg, Pb, Cd, As, Zn, Cu и др.) в почвах мира, в верхних горизонтах разных типов почв России. Кроме того, установлены особенности регионального фонового содержания многих элементов, а также выявлены закономерности изменения их количества в зависимости от гранулометрического состава, гумусированности почв, реакции среды, содержания элементов в почвообразующих породах и других факторов.
      • Таблица 3. Фоновое содержание валовых форм соединений тяжелых металлов в почвах (мг/кг)
      • Элемент, мг/кг

        Дерново-подзолистые песчаные и супесчаные

        Дерново-подзолистые суглинистые и глинистые

        Серые лесные

        Черноземы

        Каштановые

        • С расширением экологического контроля состояния почв широко стали применять методы определения содержания кислоторастворимых (1 н. HCI, 1 н. HNO3) соединений ТМ. Нередко им присваивают название «условноваловое содержание ТМ». Применение в качестве реагентов разбавленных растворов минеральных кислот не обеспечивает полного разложения пробы, но позволяет перевести в раствор основную часть соединений химических элементов техногенного происхождения.
        • К подвижным формам ТМ относят элементы и соединения почвенного раствора и твердой фазы почвы, которые находятся в состоянии динамического равновесия с химическими элементами почвенного раствора. Для определения подвижных ТМ в почвах в качестве экстрагента применяют слабо солевые растворы, с ионной силой, близкой к ионной силе природных почвенных растворов: (0,01-0,05 М СаCI2, Ca(NO3)2, KNO3). Содержание потенциально подвижных соединений контролируемых элементов в почвах определяют в вытяжке 1 н. NH4CH3COO при разных значениях рН. Используют этот экстрагент и с добавлением комплексообразователей (0,02-1,0 М ЭДТА) .
        • Для анализа чаще всего отбирают верхние слои почвы (0-10 см), иногда анализируется распределение загрязняющих веществ в почвенном профиле. Верхние горизонты играют роль геохимического барьера на пути потока веществ, поступающих из атмосферы. В условиях промывного водного режима загрязняющие вещества могут проникать вглубь и накапливаться в иллювиальных горизонтах, которые также служат геохимическими барьерами.
        • тяжелый метал рекультивация земля
        • 3.2 Рекультивация земель, загрязненных тяжелыми металлами
        • Загрязнение почв тяжелыми металлами приводит к образованию кислой или щелочной реакции почвенной среды, снижению обменной емкости катионов, потери питательных веществ, к изменению плотности, пористости, отражательной способности, к развитию эрозии, дефляции, к сокращению видового состава растительности, ее угнетению или к полной гибели.
        • Прежде, чем начать рекультивацию таких земель необходимо установить источник и причины загрязнения, провести мероприятия по снижению выбросов, локализации или ликвидации источника загрязнения. Только при таких условиях может быть достигнута высокая эффективность рекультивационных работ.
        • Ориентиром для разработки состава работ по рекультивации земель в первую очередь служит приоритетное вещество, вызывающее ухудшение экологического состояния почв и качество сельскохозяйственной продукции, а ожидаемая подвижность других опасных веществ должна регулируется специальными или комплексными мероприятиями.
        • Рекультивация земель, загрязненных тяжелыми металлами, осуществляется с использованием следующих способов:
        • 1) Культивирование устойчивых к загрязнению культурных и дикорастущих растений. На загрязненных землях сельскохозяйственного назначения проводится реорганизация и переориентация сельскохозяйственного производства за счет введения новой структуры растениеводства, обеспечивающей получение качественной продукции. В зонах с чрезвычайной экологической ситуацией, имеющих многоэлементный набор загрязнителей, целесообразно переходить с производства овощей на зерно-кормовые севообороты и развитие животноводства с особым режимом содержания животных, например, со стойловым и кормлением разбавленными кормами или с выгоном на загрязненные и чистые луга .
        • Переход на другие сельскохозяйственные культуры определяется различной их отзывчивостью на уровень содержания металлов в почве, причем эта отзывчивость у растений проявляется как в зависимости от вида, сорта, так и по распределению металлов в вегетативных и регенеративных органах. Различное накопление тяжелых металлов в растениях вызвано существованием биологических барьеров в системе: почва - корень - стебель (листья) - регенеративный орган. Обычно наибольшее накопление тяжелых металлов наблюдается в вегетативных органах, наименьшее - в регенеративных, например, при содержании в почве 800мг/кг свинца в соломе ржи обнаружено 9 мг/кг, а в зерне - 0,9мг/кг. Отзывчивость растений на отдельные металлы можно проследить на примере кадмия, наиболее чувствительными к избытку кадмия являются соя, салат, шпинат, а устойчивыми - рис, томат, капуста.
        • С учетом конкретных условий на почвах, загрязненных тяжелыми металлами, можно выращивать следующие устойчивые культуры: зерновые колосовые, злаковые травы, картофель, капусту, томаты, хлопчатник, сахарную свеклу.
        • 2) Рекультивация почв с помощью растений (фиторекультивация), способных накапливать тяжелые металлы в вегетативных органах. Установлено, что дерево за вегетационный период вдоль автомобильной дороги способно накапливать в себе количество свинца, равное его содержанию в 130 кг бензина, поэтому в населенных пунктах с загрязненными районами листовой опад целесообразно собирать и утилизировать. Для очистки почв от цинка, свинца и кадмия необходимо выращивать большой горец, от свинца и хрома - горчицу, от никеля - гречиху и т.д. (табл. 5), при загрязнение радиоактивными изотопами можно использовать вику, горох, люцерну, махорку.
        • 3) Регулирование подвижности тяжелых металлов в почве. Поглощение тяжелых металлов растениями зависит от содержания их подвижных форм в почве. Существование подвижных форм определяется свойствами и плодородием почв, биогеохимическими процессами, интенсивностью и объемами поступления тяжелых металлов в почву, выносом растениями. Поведение тяжелых металлов в почве и способы управления их содержанием вытекают из теории геохимических барьеров, а рекультивация загрязненных почв сводится к созданию дополнительных барьеров, управлению существующими барьерами или к ослаблению некоторых из них.
        • Почвы, тяжелые по механическому составу и имеющие высокое плодородие, содержат меньше подвижных форм тяжелых металлов, чем почвы легкие и малопродуктивные. Многие из металлов, относящиеся к первому классу опасности, в нейтральной почвенной среде образуют трудно растворимые соединения, а в кислой - легко растворимые. Кадмий наиболее подвижен в кислой среде и слабо подвижен в нейтральной и щелочной среде. К подвижным в кислой среде относятся химическим соединениям, содержащие катионы Zn,Сu, Pb, Cd, Sr, Mn, Ni, Coи др. К подвижным в нейтральной и щелочной среде - Mo, Cr, As, V, Se .
        • В равных условиях наименьшей растворимостью обладают фосфаты и сульфиды тяжелых металлов, из карбонатных соединений меньшую растворимость имеют соединения ртути, свинца и кадмия. Гидроксиды тяжелых металлов образуют трудно растворимые формы в слабокислых и нейтральных средах, исключением являются гидроксид Fe (рН = 2,5) и Al (рН = 4,1).
        • На подвижность оказывают влияние органические вещества с малой молекулярной массой, фульвокислоты и гуминовые кислоты, так количество подвижной меди изменяется от 4,5 мг/кг до 2,0 мг/кг при изменении содержания гумуса в почве от 0,6 до 6,5%. Адсорбция свинца почвой при изменении содержания в ней гумуса от 2,5% до 7,0% возрастает с 5 мкг/кг до 20 мкг/кг.
        • Внесение в почву жидкого навоза и слабо разложившихся органических веществ повышает подвижность тяжелых металлов за счет образования низкомолекулярных водорастворимых комплексов. Поступление тяжелых металлов в растения по степени их подвижности: кадмий - свинец - цинк - медь.
        • Для регулирования подвижности соединений тяжелых металлов в почве используют известкование, гипсование, внесение органических и минеральных удобрений, землевание (внесение глины или песка).
        • При рекультивации земель, загрязненных тяжелыми металлами, значительное внимание уделяется поддержанию и образованию в почве труднорастворимых соединений. Для этого в дополнение к приведенным способам используют искусственные и природные адсорбенты. К природным относятся торф, мох, черноземные почвы, сапропель, бентонитовые и бентонитоподобные глины, глауконитовые пески, клиноптилолиты, опоки, трепелы, диатомиты. Искусственные адсорбенты создаются в результате активации или смешения природных адсорбентов, например, активированный уголь, алюмосиликатные и железо-алюмосиликатные адсорбенты, углеалюмогели, адсорбент «СОРБЭКС», ионообменные смолы, полистирол.
        • Избирательная способность адсорбентов может быть ориентирована на определенные металлы, например, при использование адсорбента «МЕРКАПТО-8-ТРИАЗИН» кадмий, свинец, ртуть и никель переходят в недоступные для растений соединения (опыт Японии, Франции, Германии и других стран), применение клиноптололита значительно снижает поступление свинца, хрома, кадмия, меди, цинка в растения и т.д..
        • 4) Регулирование соотношений химических элементов в почве. В основе этого способа лежит антагонизм и синергизм химических элементов, т.е. когда один элемент препятствует или способствует поступлению другого в растение, например, цинк препятствует поступлению ртути, а избыток фосфора приводит к снижению токсичности цинка, кадмия, свинца и меди, присутствие кальция может создать для одних металлов антагонистические, а для других синергические условия, в плодородной почве цинк и кадмий противостоят закреплению меди и свинца, а в малоплодородной почве процесс может развиваться в обратном направлении.
        • 5) Создание рекультивационного слоя, замена или разбавление загрязненного слоя почвы может проводиться по многослойной схеме, а также путем нанесения одного слоя почвы на предварительно экранированную или неэкранированную загрязненную поверхность. Разбавление загрязненного слоя проводится землеванием чистой почвы с последующим смешением, разбавление может также проводится с помощью глубокой вспашки, когда верхний загрязненный слой перемешивается с чистым нижним слоем. Применяют снятие загрязненного слоя и его переработку, или снятие загрязненной почвы с последующей очисткой и возвращением обратно, но обычно такие операции проводят на небольших участках, они являются дорогостоящим способом рекультивации .
        • Для рекультивации больших территорий, включающих селитебные и рекреационные зоны населенных пунктов, сельскохозяйственные угодий, испытывающие длительное загрязнение, можно применить следующую комплексную схему:
        • - существенное сокращение выбросов предприятиями (технологический барьер);
        • - строгое дозирование химических средств защиты растений, оптимальное регулирование питательного и кислотного режимов почвы (технологический барьер);
        • - управление водными миграционными потоками за счет организации поверхностного стока, создания ливневой канализации, дренажных с последующей очисткой стоков (механический барьер).
        • - усиление сорбционного барьера почвенного слоя, необходимого для существенного уменьшения количества подвижных соединений тяжелых металлов, которые поступают в растения и загрязняют продукцию, в тоже время общее количество металлов в почве может не только не уменьшается, но даже расти за счет уменьшения подвижности.
        • - дополнительно к этому - минимизация инфильтрационной составляющей водного режима почвенного слоя в условиях полива зеленых насаждений, газонов, огородных, сельскохозяйственных и других культур, т.е. выполнение мероприятий, направленных, с одной стороны, на некоторое ослабление гидрофизического барьера, но с другой - необходимых для закрепления эффекта от усиления сорбционного барьера.
        • Уменьшение количества подвижных соединений при внесении сорбента фактически ослабляет перераспределение общего содержания металлов по почвенному профилю под действием нисходящих токов влаги и приводит к избыточной аккумуляции металлов в самом верхнем слое. Ослабление гидрофизического барьера путем регулируемой инфильтрации способствует перераспределению металлов, так как происходит разбавление почвенного раствора и одновременное уменьшение трудно растворимых соединений за счет десорбции.
        • Такое мероприятие можно считать возможным, поскольку при значительном загрязнении почв и грунтовых вод токсичными веществами необходимо создавать инженерно-экологическую постоянно действующую систему управления потоками вещества в компонентах: почва - грунтовые воды. Подобная система обеспечивает рекультивацию загрязненных почв и грунтовых вод, а также служит барьером для поступления техногенных продуктов в реки и другие места разгрузки подземных стоков. Для количественного обоснования этих мероприятий используются математические модели передвижения влаги, а также тяжелых металлов с учетом их сорбции и отбора корнями растений.
        • Заключение
        • Актуальность проблемы воздействия тяжелых металлов на почвенные микроорганизмы определяется тем, что именно в почве сосредоточена большая часть всех процессов минерализации органических остатков, обеспечивающих сопряжение биологического и геологического круговорота. Почва является экологическим узлом связей биосферы, в котором наиболее интенсивно протекает взаимодействие живой и неживой материи. На почве замыкаются процессы обмена веществ между земной корой, гидросферой, атмосферой, обитающими на суше организмами, важное место среди которых занимают почвенные микроорганизмы.
        • Возрастающее загрязнение окружающей среды тяжелыми металлами (TM) представляет угрозу для естественных бикомплексов и агроценозов. Аккумулирующиеся в почве TM извлекаются из нее растениями и по трофическим цепям в возрастающих концентрациях поступают в организм животных. Растения аккумулируют TM не только из почвы, но и из воздуха. В зависимости от вида растений и экологической ситуации у них доминирует влияние загрязнения почвы или воздуха. Поэтому концентрация TM в растениях может превышать или находится ниже их содержания в почве. Особенно много свинца из воздуха (до 95 %) поглощают листовые овощи.
        • На придорожных территориях значительно загрязняет тяжелыми металлами почву автотранспорт, особенно свинцом. При концентрации его в почве 50 мг/кг примерно десятую часть этого количества накапливают травянистые растения. Также растения активно поглощают цинк, количество которого в них может в несколько раз превосходить его содержание в почве.
        • Тяжелые металлы существенным образом влияют на численность, видовой состав и жизнедеятельность почвенной микробиоты. Они ингибируют процессы минерализации и синтеза различных веществ в почвах, подавляют дыхание почвенных микроорганизмов, вызывают микробостатический эффект и могут выступать как мутагенный фактор.
        • Список литературы
        • 1. Вредные химические вещества: неорганические соединения элементов I-IV групп / под ред. В.А. Филова. - Л. : Химия, 2008. - 611 с.
        • 2. Джувеликян Х. А., Щеглов Д. И., Горубнова Н. С. Загрязнение почв тяжелыми металлами. Способы контроля и нормирования загрязненных почв. Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2009. - 21 с.
        • 3. ГН 2.1.7.020-94. Ориентировочно допустимые концентрации (ОДК) тяжелых металлов и мышьяка в почвах. Дополнение № 1 к перечню ПДК и ОДК №6229-91. - М. : Госкомсаниздат, 1995.
        • 4. ГОСТ 17.4.2.03-86 (СТ СЭВ 5299-85). Охрана природы. Почвы. Паспорт почв. - М. : Госкомсаниздат, 1987.
        • 5. ГОСТ 17.4.3.01-83 (СТ СЭВ 3847-82). Охрана природы. Почвы. Общие требования к отбору проб. - М. : Госкомсаниздат, 1984.
        • 6. ГОСТ 17.4.3.06-86 (СТ СЭВ 5301-85). Охрана природы. Почвы. Общие требования к классификации почв по влиянию на них химических загрязняющих веществ. - М. : Госкомсаниздат, 1987.
        • 7. Методические указания по определению тяжелых металлов в почвах сельхозугодий и продукции растениеводства. - М. : ЦИНАО, 1992. - 60 с.
        • 8. Мотузова Г.В. Экологический мониторинг почв / Г.В. Мотузова, О.С. Безуглова. - М. : Академический Проект; Гаудеамус, 2007. - 237 с.
        • 9. Перельман А.И. Геохимия ландшафта / А.И. Перельман, Н.С. Касимов. - М. : Астрея-2000, 1999. - 768 с.
        • 10. Реймерс Н.Ф. Природопользование: слов.-справ. / Н.Ф. Реймерс. - М. : Мысль, 1990. - 638 с.
        • Размещено на Allbest.ru
        ...

Подобные документы

    Источники, характер и степень загрязнения урбанозёмов и почв. Районы г. Челябинска, подверженные наиболее интенсивному загрязнению. Влияние загрязнения почв тяжелыми металлами на растительность. Формы нахождения тяжелых металлов в выбросах и почве.

    дипломная работа , добавлен 02.10.2015

    Общая характеристика тяжёлых металлов, формы их нахождения в окружающей среде. Источники поступления тяжелых металлов в окружающую среду. Теория и методы биоиндикации. Биологические объекты как индикаторы загрязнения окружающей среды тяжелыми металлами.

    курсовая работа , добавлен 27.09.2013

    Источники поступления тяжелых металлов в водные экосистемы. Токсическое действие тяжелых металлов на человека. Оценка степени загрязнения поверхностных вод водоемов, расположенных на территории г. Гомеля, свинцом, медью, хромом, цинком, никелем.

    дипломная работа , добавлен 08.06.2013

    Рассмотрение биохимического метода очистки почв, его виды: биовентилирование, фиторемедиация (очистка с помощью зелёных растений), грибковые технологии, использование ила. Основные причины загрязнения тяжелыми металлами сельскохозяйственных земель.

    курсовая работа , добавлен 16.05.2014

    Характеристика Тюменского района. Климатическая характеристика и географическое положение. Характеристика почвенного покрова. Характеристика растительного и животного мира. Обзор мероприятий по рекультивации загрязненного тяжелыми металлами участка.

    курсовая работа , добавлен 18.12.2014

    Типы и виды деградации пригородных почв, оценка степени деградации. Способы рекультивации загрязненных почв. Характеристика г. Ижевска как источника химического загрязнения почв. Технологические приёмы рекультивации почв, загрязнённых тяжёлыми металлами.

    курсовая работа , добавлен 11.06.2015

    Обзор источников техногенного загрязнения земель. Показатели и классы опасных веществ. Загрязнение почв радионуклидами и тяжелыми металлами. Уровни загрязнения территории Беларуси в результате катастрофы на Чернобыльской АЭС. Экологические проблемы почвы.

    курсовая работа , добавлен 08.12.2016

    Понятие тяжелых металлов, их биогеохимические свойства и формы нахождения в окружающей среде. Подвижность тяжелых металлов в почвах. Виды нормирования тяжелых металлов в почвах и растениях. Аэрогенный и гидрогенный способы загрязнения почв городов.

    курсовая работа , добавлен 10.07.2015

    дипломная работа , добавлен 23.09.2012

    Основные понятия и этапы рекультивации земель. Рекультивация полигонов твердых бытовых отходов. Схема процесса очистки почвы от нефтепродуктов с внесением нефтеокисляющих микроорганизмов. Рекультивация земель, загрязненных тяжелыми металлами, отвалов.

За почти 30-летний период исследований состояния экосистем, загрязненных тяжелыми металлами, получено множество свидетельств интенсивности локального загрязнения металлами почв.

Зона сильного загрязнения сформировалась в пределах 3-5 км от Череповецкого комбината черной металлургии (Вологодская обл.). В окрестностях Среднеуральского металлургического комбината загрязнение аэрозольными выпадениями охватило территорию площадью более 100 тыс. га, причем 2-2,5 тыс. га полностью лишены растительного покрова. В ландшафтах, подверженных воздействию выбросов Чемкентского свинцового комбината, наибольший эффект наблюдается в промзоне, где концентрация свинца в почве на 2-3 порядка выше фоновой.

Отмечается загрязнение не только Pb, но и Mn, поступление которого носит вторичный характер и может быть вызвано переносом из деградированной почвы. Деградация почв наблюдается в загрязненных почвах окрестностей завода «Электроцинк» в предгорьях Северного Кавказа. Сильное загрязнение проявляется в 3-5-километровой зоне от завода. Аэрозольные выбросы свинцовоцинкового комбината Усть-Каменогорска (Северный Казахстан) обогащены металлами: до недавнего времени ежегодные выбросы РЬ составляли 730 т свинца, Zn 370 т цинка, 73 000 т серной кислоты и серного ангидрида. Выбросы аэрозолей и сточных вод привели к созданию зоны сильного загрязнения с превышением основных групп поллютантов, на порядки превышающие фоновые уровни содержания металлов. Загрязнение почв металлами часто сопровождается закислением почв.

Когда почвы подвержены аэрозольному загрязнению, важнейшим фактором, влияющим на состояние почв, является удаленность от источника загрязнения. Например, максимальное загрязнение растений и почв свинцом, поступающим с выхлопными газами автомобилей, прослеживается чаще всего в 100-200-метровой зоне от магистрали.

Влияние аэрозольных выбросов промышленных предприятий, обогащенных металлами, проявляется чаще всего в радиусе 15-20 км, реже - в 30 км от источника загрязнения.

Имеют значение такие технологические факторы, как высота выброса аэрозолей из труб заводов. Зона максимального загрязнения почв образуется в пределах расстояния, равного 10-40-кратной высоте промышленного выброса высокого и горячего и 5-20-кратной высоте низкого холодного выброса.

Существенное влияние оказывают метеорологические условия. В соответствии с направлением преобладающих ветров формируется ареал преобладающей части загрязненных почв. Чем больше скорость ветра, тем меньше загрязняются почвы ближних окрестностей предприятия, тем интенсивнее перенос загрязняющих веществ. Наибольшие концентрации загрязняющих веществ в атмосфере ожидаются для низких холодных выбросов при скорости ветра 1-2 м/с, для высоких горячих выбросов - при скорости ветра 4-7 м/с. Влияют температурные инверсии: в инверсионных условиях ослабляется турбулентный обмен, что ухудшает рассеивание аэрозолей выбросов и ведет к загрязнению в импактной зоне. Сказывается влажность воздуха: при высокой влажности уменьшается рассеяние загрязняющих веществ, так как при конденсации они могут из газообразной формы переходить в менее миграционно-способную жидкую фазу аэрозолей, далее они удаляются из атмосферы в процессе осаждения. Следует учитывать, что время пребывания во взвешенном состоянии загрязняющих частиц аэрозоля и соответственно дальность и скорость их переноса зависят и от физико-химических свойств аэрозолей: частицы более крупные оседают быстрее, чем тонкодисперсные.

В зоне воздействия выбросов промышленных предприятий, прежде всего предприятий цветной металлургии, являющихся самым мощным поставщиком тяжелых металлов, меняется состояние ландшафта в целом. Например, ближайшие окрестности свинцовоцинкового завода в Приморье превратились в техногенную пустыню. Они полностью лишены растительности, почвенный покров уничтожен, поверхность склонов сильно эродирована. На расстоянии более 250 м сохранился изреженный лес из дуба монгольского без примеси других пород, травянистый покров полностью отсутствует. В верхних горизонтах распространенных здесь бурых лесных почв содержание металлов превысило фоновые уровни и кларк в десятки и сотни раз.

Судя по содержанию металлов в составе вытяжки 1н. HNO 3 из этих загрязненных почв, основная часть металлов в них находится в подвижном, непрочно связанном состоянии. Это общая закономерность для загрязненных почв. В данном случае это привело к повышению миграционной способности металлов и увеличению на порядки концентрации металлов в лизиметрических водах. Выбросы данного предприятия цветной металлургии наряду с обогащением металлами имели повышенное содержание оксидов серы, что способствовало подкислению осадков и подкислению почв, pH их снизился на единицу.

В почвах, загрязненных фторидами, напротив, уровень pH почв повышался, что способствовало увеличению подвижности органического вещества: окисляемость водных вытяжек из почв, загрязненных фторидами, повысилась в несколько раз.

Поступившие в почву металлы распределяются между твердыми и жидкой фазами почвы. Органические и минеральные компоненты твердых фаз почвы удерживают металлы за счет разных механизмов с различной прочностью. Эти обстоятельства имеют важное экологическое значение. От того, как много будет поглощено почвами металлов и как прочно они будут удержаны, зависит способность загрязненных почв влиять на состав и свойства вод, растений, воздуха, способность тяжелых металлов к миграции. От этих же факторов зависит буферная способность почв по отношению к загрязняющим веществам, способность их выполнять в ландшафте барьерные функции.

Количественные показатели поглотительной способности почв в отношении различных химических веществ определяют чаще всего в модельных экспериментах, приводя изучаемые почвы во взаимодействие с различными дозами контролируемых веществ. Возможны разные варианты постановки этих экспериментов в полевых или лабораторных условиях.

Лабораторные опыты проводят в статических или динамических условиях, приводя исследуемую почву во взаимодействие с растворами, содержащими переменные концентрации металлов. По результатам опыта строят изотермы сорбции металлов стандартным методом, анализируя закономерности поглощения с использованием уравнений Ленгмюра или Фрейндиха.

Накопленный опыт исследования поглощения ионов различных металлов почвами с различными свойствами свидетельствует о наличии ряда общих закономерностей. Количество поглощенных почвой металлов и прочность их удерживания являются функцией концентрации металлов в растворах, взаимодействующих с почвой, а также свойств почвы и свойств металла, влияют также и условия постановки эксперимента. При малых нагрузках почва способна поглотить загрязняющие вещества полностью вследствие процессов ионного обмена, специфической сорбции. Эта способность проявляется тем сильнее, чем большей дисперсностью характеризуется почва, чем выше в ней содержание органических веществ. Не меньшее значение имеет реакция почв: повышение pH способствует увеличению поглощения почвами тяжелых металлов.

Повышение нагрузки ведет к снижению поглощения. Внесенный металл поглощается почвой не полностью, но между концентрацией металла в растворе, взаимодействующим с почвой, и количеством поглощенного металла имеет место прямолинейная зависимость. Последующее повышение нагрузки ведет к дальнейшему уменьшению количества поглощенного почвой металла вследствие ограниченного количества позиций в обменно-сорбционном комплексе, способных к обменному и безобменному поглощению ионов металлов. Ранее наблюдавшаяся прямолинейная зависимость между концентрацией металлов в растворе и их количеством, поглощенным твердыми фазами, нарушается. На следующем этапе возможности твердых фаз почвы поглощать новые дозы ионов металлов почти полностью исчерпываются, увеличение концентрации металла во взаимодействующем с почвой растворе практически перестает влиять на поглощение металла. Способность почв поглощать ионы тяжелых металлов в широком интервале их концентраций во взаимодействующем с почвой растворе свидетельствует о полифункциональности столь гетерогенного природного тела, каким является почва, о разнообразии механизмов, обеспечивающих ее способность удерживая металлы, защищать от загрязнения сопредельные с почвой среды. Но очевидно, что эта способность почвы не беспредельна.

Экспериментальные данные позволяют определить показатели максимальной поглотительной способности почв в отношении металлов. Как правило, количество поглощенных ионов металлов значительно меньше емкости катионного обмена почв. Например, максимальная сорбция Cd, Zn, Pb дерново-подзолистыми почвами Белоруссии колеблется в пределах 16-43% от ЕКО в зависимости от уровня pH, содержания гумуса и вида металла (Головатый, 2002). Поглотительная способность у суглинистых почв выше, чем у супесчаных, а у высоко гумусированных выше, чем у малогумусных. Влияет и вид металла. Максимальное количество элементов, поглощенных почвой специфически, падает в ряду Pb, Cu, Zn, Cd.

Экспериментально можно определить не только количество поглощенных почвами металлов, но и прочность их удерживания почвенными компонентами. Прочность фиксации тяжелых металлов почвами устанавливается на основе их способности экстрагироваться из загрязненных почв различными реагентами. Начиная с середины 1960-х гг. предложено множество схем экстракционного фракционирования соединений металлов из почв, донных отложений. Объединяет их общая идеология. Все схемы фракционирования предполагают прежде всего разделить соединения металлов, удерживаемые почвой, на непрочно и прочно связанные с почвенной матрицей. Они предполагают также среди прочно связанных соединений тяжелых металлов выделить их соединения, предположительно связанные с главными носителями тяжелых металлов: силикатными минералами, оксидами и гидроксидами Fe и Mn, органическими веществами. Среди непрочно связанных соединений металлов предполагается выделение групп соединений металлов, удерживаемых почвенными компонентами за счет различных механизмов (обменные, специфически сорбированные, связанные в комплексы) (Кузнецов, Шимко, 1990; Минкина и др. 2008).

Различаются применяемые схемы фракционирования соединений металлов в загрязненных почвах рекомендуемыми экстрагентами. Все экстрагенты предложены на основании их возможности переводить в раствор предполагаемую группу соединений металлов, однако они не могут обеспечить строгую селективность извлечения названных групп соединений тяжелых металлов. Тем не менее накопившиеся данные о фракционном составе соединений металлов в загрязненных почвах позволяют выявить ряд общих закономерностей.

Для разных ситуаций установлено, что при загрязнении почв в них меняется соотношение прочно и непрочно связанных соединений металлов. Одним из примеров являются показатели состояния Cu, Pb, Zn в загрязненном черноземе обыкновенном Нижнего Дона.

Способность и к прочному, и непрочному удерживанию тяжелых металлов проявили все почвенные компоненты. Ионы тяжелых металлов прочно фиксируются глинистыми минералами, оксидами и гидроксидами Fe и Mn, органическими веществами (Минкина и др., 2008). Важно то, что при увеличении общего содержания металлов в загрязненных почвах в 3-4 раза, соотношение соединений металлов в них изменилось в сторону увеличения доли непрочно связанных форм. В свою очередь и в их составе произошло аналогичное изменение соотношения составляющих их соединений: уменьшилась доля менее подвижных из них (специфически сорбированных) за счет увеличения доли обменных форм металлов и образующих комплексы с органическими веществами.

Наряду с повышением общего содержания тяжелых металлов в загрязненных почвах происходит увеличение относительного содержания более подвижных соединений металлов. Это свидетельствует об ослаблении буферности почв по отношению к металлам, их способности защищать сопредельные среды от загрязнения.

В загрязненных металлами почвах существенно меняются важнейшие микробиологические и химические свойства. Ухудшается состояние микробоценоза. На загрязненных почвах происходит отбор более выносливых видов, а менее устойчивые виды микроорганизмов выбывают. При этом могут появиться новые виды микроорганизмов, обычно отсутствующие на незагрязненных почвах. Следствием этих процессов является снижение биохимической активности почв. Установлено, что в загрязненных металлами почвах снижается нитрифицирующая активность, в результате чего активно развивается грибной мицелий и уменьшается количество сапрофитных бактерий. В загрязненных почвах падает минерализация органического азота. Выявлено влияние загрязнения металлами на ферментативную активность почв: снижение в них уреазной и дегидрогеназной, фосфатазной, аммонифицирующей активности.

Загрязнение металлами влияет на фауну и микрофауну почвы. При повреждении лесного покрова в лесной подстилке падает численность насекомых (клещей, бескрылых насекомых), при этом количество пауков и многоножек может оставаться стабильным. Страдают и почвенные беспозвоночные, часто наблюдается гибель дождевых червей.

Ухудшаются физические свойства почв. Почвы теряют свойственную им структуру, в них уменьшается общая порозность, снижается водопроницаемость.

Изменяются химические свойства почв под влиянием загрязнения. Эти изменения оцениваются с помощью двух групп показателей: биохимических и педохимических (Глазовская, 1976). Называют эти показатели также прямыми и косвенными, специфическими и неспецифическими.

Биоиохимические показатели отражают действие загрязняющих веществ на живые организмы, их прямое специфическое действие. Оно обусловлено влиянием химических веществ на биохимические процессы в растениях, микроорганизмах, позвоночных и беспозвоночных обитателях почвы. Результатом загрязнения является снижение биомассы, урожая растений и его качества, возможно, гибель. Происходит подавление почвенных микроорганизмов, снижение их численности, разнообразия, биологической активности. Биохимическими показателями состояния загрязненных почв служат показатели общего содержания в них загрязняющих веществ (в данном случае тяжелых металлов), показатели содержания подвижных соединений металлов, с которыми непосредственно связано токсическое действие металлов на живые организмы.

Педохимическое (косвенное, неспецифическое) действие загрязняющих веществ (в данном случае металлов) обусловлено их влиянием на почвенно-химические условия, которые, в свою очередь, влияют на условия обитания в почвах живых организмов и на их состояние. Важнейшее значение имеют кислотно-основные, окислительно-восстановительные условия, гумусное состояние почв, ионообменные свойства почв. Например, газообразные выбросы, содержащие оксиды серы и азота, поступая в почву в форме азотной и серной кислот, вызывают снижение pH почв на 1-2 единицы. В меньшей степени способствуют понижению pH почв гидролитически кислые удобрения. Подкисление почв, в свою очередь, ведет к повышению подвижности различных химических элементов в почвах, например, марганца, алюминия. Подкисление почвенного раствора способствует изменению соотношения различных форм химических элементов в пользу увеличения доли более токсичных соединений (например, свободных форм алюминия). Отмечено снижение подвижности фосфора в почве при избыточном количестве в ней цинка. Снижение подвижности соединений азота является результатом нарушения при загрязнении почв их биохимической активности.

Изменение кислотно-основных условий и ферментативной активности сопровождается ухудшением гумусного состояния загрязненных почв, в них отмечено уменьшение содержания гумуса, изменение его фракционного состава. Результатом является изменение ионообменных свойств почв. Например, отмечено, что в черноземах, загрязненных выбросами медного комбината, снизилось содержание обменных форм кальция и магния, изменилась степень насыщенности почв основаниями.

Очевидна условность подобного разделения эффектов влияния загрязняющих веществ на почвы. Хлориды, сульфаты, нитраты оказывают не только педохимическое действие на почвы. Они могут отрицательно влиять на живые организмы и непосредственно, нарушая ход биохимических процессов в них. Например, сульфаты, поступившие в почву в количестве 300 кг/га и больше, могут накапливаться в растениях в количествах, превышающих их допустимый уровень. Загрязнение почв фторидами натрия ведет к поражению растений как под влиянием их токсического воздействия, так и под влиянием вызванной ими сильнощелочной реакции.

Рассмотрим на примере ртути взаимосвязь природных и техногенных соединений металла в различных звеньях биогеоценоза, их совместное влияние на живые организмы, в том числе на здоровье человека.

Ртуть является одним из наиболее опасных металлов, загрязняющих природные среды. Мировой уровень ежегодной добычи ртути составляет около 10 тыс. т. Выделяют три основные группы отраслей промышленности с высокой эмиссией ртути и ее соединений в окружающую среду:

1. Предприятия цветной металлургии, производящие металлическую ртуть из ртутных руд и концентратов, а также путем вторичной переработки различных ртутьсодержащих продуктов;

2. Предприятия химической и электротехнической промышленности, где ртуть используется в качестве одного из элементов производственного цикла (например, при амальгамировании, с которым связано производство ртути, цветных металлов);

3. Предприятия, добывающие и перерабатывающие руды различных металлов (помимо ртутных), в том числе путем термической обработки рудного сырья; предприятия, производящие цемент, флюс для металлургии; производства, сопровождающиеся сжиганием углеводородного топлива (нефть, газ, уголь). В целом это те производства, где ртуть является попутным компонентом, иногда даже в заметных количествах.

Вносят вклад в загрязнение ртутью также предприятия черной металлургии и химико-фармацевтической промышленности, производство тепловой и электрической энергии, производство хлора и каустической соды, приборостроение, извлечение драгоценных металлов из руд (например, предприятия золотодобывающей промышленности) и пр. В сельскохозяйственном производстве применение средств защиты растений от вредителей и болезней ведет к распространению ртутьсодержащих соединений.

В процессе добычи, переработки и использования теряется около половины производимой ртути. Поступают ртутьсодержащие соединения в окружающую среду с газовыми выбросами, сточными водами, твердыми жидкими, пастообразными отходами. Наиболее значительные потери происходят при пирометаллургическом способе ее получения. Ртуть теряется с огарками, отходящими газами, пылью и вентиляционными выбросами. Содержание ртути в углеводородных газах может достигать 1-3 мг/м 3 , в нефти 2-10 -3 %. В атмосфере велика доля летучих форм свободной ртути и метилртути, Hg 0 и (CH 3) 2 Hg.

Обладая продолжительным временем существования (от нескольких месяцев до трех лет), эти соединения могут переноситься на большие расстояния. Только незначительная часть элементарной ртути сорбируется на мелкодисперсных пылеватых частицах и в процессе сухого осаждения достигает земной поверхности. Около 10-20 % ртути переходит в состав водорастворимых соединений и выпадает с осадками, далее поглощается почвенными компонентами, донными отложениями.

С земной поверхности часть ртути вследствие испарения частично вновь поступает в атмосферу, пополняя запас ее летучих соединений.

Особенности круговорота ртути и ее соединений в природе обусловлены такими свойствами ртути, как ее летучесть, устойчивость во внешней среде, растворимость в атмосферных осадках, способность к сорбции почвами и взвесью поверхностных вод, способность к биотическим и абиотическим превращениям (Кузубова и др., 2000). Техногенные поступления ртути нарушают природный цикл металла и создают угрозу для экосистемы.

Среди соединений ртути наибольшей токсичностью отличаются органические производные ртути, прежде всего метилртуть, диметилртуть. Внимание к ртути в окружающей среде проявилось в 1950-е гг. Тогда общую тревогу вызвали массовые отравления людей, проживающих на берегах залива Минамата (Япония), основным занятием которых была ловля рыбы, которая была основным продуктом их питания. Когда стало известно, что причиной отравления явилось загрязнение вод залива промышленными сточными водами с повышенным содержанием ртути, загрязнение экосистемы ртутью привлекло внимание исследователей многих стран.

В природных водах содержание ртути невелико, средняя концентрация в водах зоны гипергенеза составляет 0,1 ∙ 10 -4 мг/л, океана - 3 ∙ 10 -5 мг/л. Ртуть в водах присутствует в одновалентном и двухвалентном состоянии, в восстановительных условиях находится в форме незаряженных частиц. Отличает ее способность к комплексообразованию с различными лигандами. В водах среди соединений ртути доминируют гидроксо-, хлоридные, лимоннокислые, фульватные и другие комплексы. Метильные производные ртути являются наиболее токсичными.

Образование метилртути происходит главным образом в толщах вод и осадков пресных и морских вод. Поставщиком метильных групп для ее образования являются присутствующие в природных водах различные органические вещества и продукты их деструкции. Образование метилртути обеспечивают взаимосвязанные биохимические и фотохимические процессы. Ход процесса зависит от температуры, окислительно-восстановительных и кислотно-основных условий, от состава микроорганизмов и их биологической активности. Интервал оптимальных условий для образования метилртути довольно широк: pH 6-8, температура 20-70 °С. Способствует активизации процесса повышение интенсивности солнечного излучения. Процесс метилирования ртути является обратимым, он сопряжен с процессами деметилирования.

Образование наиболее токсичных соединений ртути отмечается в водах новых искусственных водохранилищ. В них оказываются затопленными массы органического материала, поставляющего в большом количестве водорастворимые органические вещества, которые включаются в процессы микробного метилирования. Одним из продуктов этих процессов являются метилированные формы ртути. Конечным результатом является накопление метилртути в рыбе. Эти закономерности четко проявились в молодых водохранилищах США, Финляндии, Канады. Установлено, что максимальное накопление ртути в рыбе водохранилищ происходит через 5-10 лет после затопления, а возврат к естественным уровням их содержания может наступить не ранее 15-20 лет после затопления.

Метилпроизводные ртути активно усваиваются живыми организмами. Для ртути характерен очень высокий коэффициент накопления. Кумулятивные свойства ртути проявляются в увеличении ее содержания в ряду: фитопланктон-макрофитопланктон-планктоноядные рыбы-хищные рыбы-млекопитающие. Это отличает ртуть от многих других металлов. Период полувыведения ртути из организма оценивается месяцами, годами.

Сочетание высокой эффективности усвоения метилированных соединений ртути живыми организмами и низкой скорости их выведения из организмов ведет к тому, что именно в этой форме ртуть поступает по пищевым цепочкам и максимально накапливается в организме животных.

Наибольшая токсичность метилртути по сравнению с другими ее соединениями обусловлена рядом ее свойств: хорошей растворимостью в липидах, способствующей свободному проникновению в клетку, где она легко взаимодействует с белками. Биологическим следствием этих процессов являются мутагенные, эмбриотоксические, генотоксические и другие опасные изменения в организмах. Общепризнано, что для человека рыба и рыбные продукты являются преобладающими источниками метилртути. Токсическое ее действие на организм человека проявляется в основном в поражении нервной системы, зон коры головного мозга, ответственных за сенсорные, зрительные и слуховые функции.

В России в 1980-е годы были впервые проведены широкие комплексные исследования состояния ртути в биогеоценозе. Это был район бассейна реки Катунь, где планировалось строительство Катунской ГЭС. Тревогу вызывало распространение в регионе горных пород, обогащенных ртутью, в пределах месторождения действовали ртутные рудники. Предупреждением звучали и результаты исследований, выполненных к тому времени в разных странах, свидетельствующие об образовании метилированных производных ртути в водах водохранилищ даже при отсутствии распространения рудных тел в регионе.

Следствием влияния природных и техногенных потоков ртути в районе предполагаемого строительства Катунской ГЭС явились повышенные концентрации ртути в почвах. Отмечена локализация ртутного загрязнения и в донных отложениях верхней части реки Катунь. Было составлено несколько прогнозов экологической обстановки в районе предполагаемого строительства ГЭС и создания водохранилища, но в связи с начавшейся перестройкой в стране работы в этом направлении были приостановлены.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

К тяжелым металлам (ТМ) относятся около 40 металлов с атомными массами свыше 50 и плотностью более 5 г/см 3 , хотя в число ТМ входит и легкий бериллий. Оба признака достаточно условны и перечни ТМ по ним не совпадают.

По токсичности и распространению в окружающей среде можно выделить приоритетную группу ТМ: Pb, Hg, Cd, As, Bi, Sn, V, Sb. Несколько меньшее значение имеют: Сг, Cu, Zn, Mn, Ni, Co, Mo.

Все ТМ в той или иной степени ядовиты, хотя некоторые из них (Fe, Cu, Co, Zn, Mn) входят в состав биомолекул и витаминов.

Тяжелые металлы антропогенного происхождения попадают из воздуха в почву в виде твердых или жидких осадков. Лесные массивы с их развитой контактирующей поверхностью особенно интенсивно задерживают тяжелые металлы.

В общем, опасность загрязнения тяжелыми металлами из воздуха существует в равной степени для любых почв. Тяжелые металлы негативно влияют на почвенные процессы, плодородие почв и качество сельскохозяйственной продукции. Восстановление биологической продуктивности почв, загрязненных тяжелыми металлами – одна из наиболее сложных проблем охраны биоценозов.

Важной особенностью металлов является устойчивость загрязнения. Сам элемент разрушиться не может, переходя из одного соединения в другое или перемещаясь между жидкой и твердой фазами. Возможны окислительно-восстановительные переходы металлов с переменной валентностью.

Опасные для растений концентрации ТМ зависят от генетического типа почвы. Основными показателями, влияющими на накопление ТМ в почвах, являются кислотно-основные свойства и содержание гумуса .

Учесть все разнообразие почвенно-геохимических условий при установлении ПДК тяжелых металлов практически невозможно. В настоящее время для ряда тяжелых металлов установлены ОДК их содержания в почвах, которые используются в качестве ПДК (приложение 3).

При превышении допустимых значений содержания ТМ в почвах эти элементы накапливаются в растениях в количествах, превышающих их ПДК в кормах и продуктах питания.

В загрязненных почвах глубина проникновения ТМ обычно не превышает 20 см, однако при сильном загрязнении ТМ могут проникать на глубину до 1,5м. Среди всех тяжелых металлов цинк и ртуть обладают наибольшей миграционной способностью и распределяются равномерно в слое почвы на глубине 0…20 см, в то время как свинец накапливается только в поверхностном слое (0…2,5 см). Промежуточное положение между этими металлами занимает кадмий.

У свинца четко выражена тенденция к накоплению в почве, т.к. его ионы малоподвижны даже при низких значениях рН. Для различных видов почв скорость вымывания свинца колеблется от 4г до 30 г/га в год. В то же время количество вносимого свинца может составлять в различных районах 40…530 г/га в год. Попадающий при химическом загрязнении в почву свинец сравнительно легко образует гидроксид в нейтральной или щелочной среде. Если почва содержит растворимые фосфаты, тогда гидроксид свинца переходит в труднорастворимые фосфаты.

Значительные загрязнения почвы свинцом можно обнаружить вдоль крупных автомагистралей, вблизи предприятий цветной металлургии, вблизи установок по сжиганию отходов, где отсутствует очистка отходящих газов. Проводимая постепенная замена моторного топлива, содержащего тетраэтилсвинец, топливом без свинца дает положительные результаты: поступление свинца в почву резко снизилось и в будущем этот источник загрязнения в значительной степени будет ликвидирован.

Опасность попадания свинца с частицами почв в организм ребенка является одним из определяющих факторов при оценке опасности загрязнения почв населенных пунктов. Фоновые концентрации свинца в почвах разного типа колеблются в пределах 10…70 мг/кг. По мнению американских исследователей, содержание свинца в городских почвах не должно превышать 100 мг/кг – при этом обеспечивается защита организма ребенка от избыточного поступления свинца через руки и загрязненные игрушки. В реальных же условиях содержание свинца в почве значительно превышает этот уровень. В большинстве городов содержание свинца в почве варьируется в пределах 30…150 мг/кг при средней величине около 100 мг/кг. Наиболее высокое содержание свинца – от 100 до 1000 мг/кг – обнаруживается в почве городов, в которых расположены металлургические и аккумуляторные предприятия (Алчевск, Запорожье, Днепродзержинск, Днепропетровск, Донецк, Мариуполь, Кривой Рог).

Растения более устойчивы по отношению к свинцу, чем люди и животные, поэтому необходимо тщательно следить за содержанием свинца в продуктах питания растительного происхождения и в фураже.

У животных на пастбищах первые признаки отравления свинцом наблюдаются при суточной дозе около 50 мг/кг сухого сена (на сильно загрязненных свинцом почвах получаемое сено может содержать свинца 6,5 г/кг сухого сена!). Для людей при употреблении салата ПДК составляет 7,5 мг свинца на 1 кг листьев.

В отличие от свинца кадмий попадает в почву в значительно меньших количествах: около 3…35 г/га в год. Кадмий заносится в почву из воздуха (около 3 г/га в год) либо с фосфорсодержащими удобрениями (35…260 г/т). В некоторых случаях источником загрязнения могут быть предприятия, связанные с переработкой кадмия. В кислых почвах со значением рН<6 ионы кадмия весьма подвижны и накопления металла не наблюдается. При значениях рН>6 кадмий отлагается вместе с гидроксидами железа, марганца и алюминия, при этом происходит потеря протонов группами ОН. Такой процесс при понижении рН становится обратимым, и кадмий, а также другие ТМ, могут необратимо медленно диффундировать в кристаллическую решетку оксидов и глин.

Соединения кадмия с гуминовыми кислотами значительно менее устойчивы, чем аналогичные соединения свинца. Соответственно накопление кадмия в гумусе протекает в значительно меньшей степени, чем накопление свинца.

В качестве специфичного соединения кадмия в почве можно назвать сульфид кадмия, который образуется из сульфатов при благоприятных условиях восстановления. Карбонат кадмия образуется только при значениях рН >8, таким образом, предпосылки для его осуществления крайне незначительны.

В последнее время большое внимание стали уделять тому обстоятельству, что в биологическом иле, который вносится в почву для ее улучшения, обнаруживается повышенная концентрация кадмия. Около 90% кадмия, имеющегося в сточных водах, переходит в биологический ил: 30% при первоначальном осаждении и 60…70% при его дальнейшей обработке.

Удалить кадмий из ила практически невозможно. Однако, более тщательный контроль за содержанием кадмия в сточных водах позволяет снизить его содержание в иле до значений ниже 10 мг/кг сухого вещества. Поэтому практика использования ила очистных сооружений в качестве удобрения весьма различается в разных странах.

Основными параметрами, определяющими содержания кадмия в почвенных растворах или его сорбцию почвенными минералами и органическими компонентами, являются рН и вид почвы, а также присутствие других элементов, например кальция.

В почвенных растворах концентрация кадмия может составлять 0,1…1мкг/л. В верхних слоях почвы, глубиной до 25см, в зависимости от концентрации и типа почвы элемент может удерживаться в течение 25…50 лет, а в отдельных случаях даже 200…800 лет.

Растения усваивают из минеральных веществ почвы не только жизненно важные для них элементы, но и такие, физиологическое действие которых либо неизвестно, либо безразлично для растения. Содержание кадмия в растении полностью определяется его физическими и морфологическими свойствами – его генотипом.

Коэффициент переноса тяжелых металлов из почвы в растения приведены ниже:

Pb 0,01…0,1 Ni 0,1…1,0 Zn 1…10

Cr 0,01…0,1 Cu 0,1…1,0 Cd 1…10

Кадмий склонен к активному биоконцентрированию, что приводит в довольно короткое время к его накоплению в избыточных биодоступных концентрациях. Поэтому кадмий, по сравнению с другими ТМ, является наиболее сильным токсикантом почв (Cd > Ni > Cu > Zn).

Между отдельными видами растений наблюдаются значительные различия. Если шпинат (300 млрд -1), кочанный салат (42 млрд -1), петрушку (31 млрд -1), а также сельдерей, кресс-салат, свеклу и лук-резанец можно отнести к растениям, „обогащенным” кадмием, то в бобовых, томатах, косточковых и семечковых фруктах содержится относительно мало кадмия (10…20 млрд -1). Все концентрации указаны относительно массы свежего растения (или плода). Из зерновых культур зерно пшеницы сильнее загрязнено кадмием, чем зерно ржи (50 и 25 млрд -1), однако 80…90% поступившего из корней кадмия остается в корнях и соломе.

Поглощение кадмия растениями из почвы (перенос почва/растение) зависит не только от вида растения, но и от содержания кадмия в почве. При высокой концентрации кадмия в почве (более 40 мг/кг) на первом месте стоит его поглощение корнями; при меньшем содержании наибольшее поглощение происходит из воздуха через молодые побеги. Длительность роста также влияет на обогащение кадмием: чем короче вегетация, тем меньше перенос из почвы в растение. Это является причиной того, что накопление кадмия в растениях из удобрений оказывается меньшим, чем его разбавление за счет ускорения роста растения, вызванного действием этих же удобрений.

Если в растениях достигается высокая концентрация кадмия, то это может привести к нарушениям нормального роста растений. Урожай бобов и моркови, например, снижается на 50%, если содержание кадмия в субстрате составляет 250 млн -1 . У моркови листья увядают при концентрации кадмия 50 мг/кг субстрата. У бобов при этой концентрации на листьях выступают ржавые (резко очерченные) пятна. У овса на концах листьев можно наблюдать хлороз (пониженное содержание хлорофилла).

По сравнению с растениями многие виды грибов накапливают большое количество кадмия. К грибам с высоким содержанием кадмия относят некоторые разновидности шампиньонов, в частности овечий шампиньон, в то время как луговой и культурный шампиньоны содержат относительно мало кадмия. При исследовании различных частей грибов было установлено, что пластинки в них содержат больше кадмия, чем сама шляпка, а меньше всего кадмия в ножке гриба. Как показывают опыты по выращиванию шампиньонов, двух-трехкратное увеличение содержания кадмия в грибах обнаруживается в том случае, если его концентрация в субстрате увеличивается в 10 раз.

Дождевые черви обладают способностью быстрого накопления кадмия из почвы, вследствие чего они оказались пригодными для биоиндикации остатков кадмия в почве.

Подвижность ионов меди еще выше, чем подвижность ионов кадмия. Это создает более благоприятные условия для усвоения меди растениями. Благодаря своей высокой подвижности медь легче вымывается из почвы, чем свинец. Растворимость соединений меди в почве заметно увеличивается при значениях рН< 5. Хотя медь в следовых концентрациях считается необходимой для жизнедеятельности, у растений токсические эффекты проявляются при содержании 20 мг на кг сухого вещества.

Известно альгицидное действие меди. Медь оказывает токсическое действие и на микроорганизмы, при этом достаточна концентрация около 0,1мг/л. Подвижность ионов меди в гумусном слое ниже, чем в расположенном ниже минеральном слое.

К сравнительно подвижным элементам в почве относится цинк. Цинк принадлежит к числу распространенных в технике и быту металлов, поэтому ежегодное внесение его в почву достаточно велико: оно составляет 100…2700г на гектар. Особенно загрязнена почва вблизи предприятий, перерабатывающих цинксодержащие руды.

Растворимость цинка в почве начинает увеличиваться при значениях рН<6. При более высоких значениях рН и в присутствии фосфатов усвояемость цинка растениями значительно понижается. Для сохранения цинка в почве важнейшую роль играют процессы адсорбции и десорбции, определяемые значением рН, в глинах и различных оксидах. В лесных гумусовых почвах цинк не накапливается; например, он быстро вымывается благодаря постоянному естественному поддержанию кислой среды.

Для растений токсический эффект создается при содержании около 200мг цинка на кг сухого материала. Организм человека достаточно устойчив по отношению к цинку и опасность отравления при использовании сельскохозяйственных продуктов, содержащих цинк, невелика. Тем не менее, загрязнение почвы цинком представляет серьезную экологическую проблему, так как при этом страдают многие виды растений. При значениях рН>6 происходит накопление цинка в почве в больших количествах благодаря взаимодействию с глинами.

Различные соединения железа играют существенную роль в почвенных процессах в связи со способностью элемента менять степень окисления с образованием соединений различной растворимости, окисленности, подвижности. Железо в очень высокой степени вовлечено в антропогенную деятельность, оно отличается настолько высокой технофильностью, что нередко говорят о современном «ожелезнении» биосферы. В техносферу в настоящее время вовлечено более 10 млрд т железа, 60% которого рассеяно в пространстве.

Аэрация восстановленных горизонтов почвы, различных отвалов, терриконов приводит к реакциям окисления; при этом присутствующие в таких материалах сульфиды железа преобразуются в сульфаты железа с одновременным образованием серной кислоты:

4FeS 2 + 6H 2 O + 15O 2 = 4FeSO 4 (OH) + 4H 2 SO 4

В таких средах значения рН могут снижаться до 2,5…3,0. Серная кислота разрушает карбонаты с образованием гипса, сульфатов магния и натрия. Периодическая смена окислительно-восстановительных условий среды приводит к декарбонизации почв, дальнейшему развитию устойчивой кислой среды с рН 4…2,5, причем соединения железа и марганца накапливаются в поверхностных горизонтах.

Гидроксиды и оксиды железа и марганца при образовании осадков легко захватывают и связывают никель, кобальт, медь, хром, ванадий, мышьяк.

Основные источники загрязнения почвы никелем – предприятия металлургии, машиностроения, химической промышленности, сжигание каменного угля и мазута на ТЭЦ и котельных. Антропогенное загрязнение никелем наблюдается на расстоянии до 80…100 км и более от источника выброса.

Подвижность никеля в почве зависит от концентрации органического вещества (гумусовых кислот), рН и потенциала среды. Миграция никеля носит сложный характер. С одной стороны, никель поступает из почвы в виде почвенного раствора в растения и поверхностные воды, с другой – его количество в почве пополняется вследствие разрушения почвенных минералов, отмирания растений и микроорганизмов, а также за счет его внесения в почву с атмосферными осадками и пылью, с минеральными удобрениями.

Основной источник загрязнения почвы хромом – сжигание топлива и отходы гальванических производств, а также отвалы шлаков при производстве феррохрома, хромовых сталей; некоторые фосфорные удобрения содержат хрома до 10 2 …10 4 мг/кг.

Поскольку Cr +3 в кислой среде инертен (выпадая почти полностью в осадок при рН 5,5), его соединения в почве весьма стабильны. Напротив, Cr +6 крайне нестабилен и легко мобилизуется в кислых и щелочных почвах. Снижение подвижности хрома в почвах может приводить к его дефициту в растениях. Хром входит в состав хлорофилла, придающего листьям растений зеленый цвет, и обеспечивает усвоение растениями из воздуха углекислоты.

Установлено, что известкование, а также применение органических веществ и соединений фосфора существенно снижает токсичность хроматов в загрязненных почвах. При загрязнении почв шестивалентным хромом подкисление, а затем применение восстанавливающих агентов (например, серы) используется для восстановления его до Cr +3 , после чего проводится известкование для осаждения соединений Cr +3 .

Высокая концентрация хрома в почве городов (9…85 мг/кг) связана с высоким содержанием его в дождевых и поверхностных водах.

Накопление или вымывание токсичных элементов, попавших в почву, в значительной степени зависит от содержания гумуса, который связывает и удерживает ряд токсичных металлов, но в первую очередь – медь, цинк, марганец, стронций, селен, кобальт, никель (в гумусе количество этих элементов в сотни-тысячи раз больше, чем в минеральной составляющей почв).

Природные процессы (солнечная радиация, климат, выветривание, миграция, разложение, вымывание) способствуют самоочищению почв, основной характеристикой которого является его продолжительность. Продолжительность самоочищения – это время, в течение которого происходит уменьшение на 96% массовой доли загрязняющего вещества от начального значения или до его фонового значения. Для самоочищения почв, а также их восстановления требуется много времени, которое зависит от характера загрязнения и природных условий. Процесс самоочищения почв длится от нескольких дней до нескольких лет, а процесс восстановления нарушенных земель – сотни лет.

Способность почв к самоочищению от тяжелых металлов невелика. Из довольно богатых органическим веществом лесных почв умеренного пояса с поверхностным стоком удаляется только примерно 5% поступающего из атмосферы свинца и около 30% цинка и меди. Остальная часть выпавших ТМ практически полностью задерживается в поверхностном слое почвы, поскольку миграция вниз по почвенному профилю происходит крайне медленно: со скоростью 0,1…0,4 см/год. Поэтому время полувыведения свинца в зависимости от типа почв может составить от 150 до 400 лет, а для цинка и кадмия – 100…200 лет.

Сельскохозяйственные почвы несколько быстрее очищаются от избыточных количеств некоторых ТМ в силу более интенсивной миграции за счет поверхностного и внутрипочвенного стока, а также из-за того, что заметная часть микроэлементов через корневую систему переходит в зеленую биомассу и уносится с урожаем.

Следует отметить, что загрязнение почв некоторыми токсичными веществами существенно тормозит процесс самоочищения почв от бактерий группы кишечной палочки. Так, при содержании 3,4-бензпирена 100 мкг/кг почвы численность этих бактерий в почве в 2,5 раза выше, чем в контроле, а при концентрации более 100 мкг/кг и до 100 мг/кг – их значительно больше.

Исследования почв в районе металлургических центров, проведенные Институтом почвоведения и агрохимии, свидетельствуют, что в радиусе 10км содержание свинца в 10 раз превышает фоновое значение. Наибольшее превышение отмечено в г.г.Днепропетровске, Запорожье и Мариуполе. Содержание кадмия в 10…100 раз выше фонового уровня отмечено вокруг Донецка, Запорожье, Харькова, Лисичанска; хрома – вокруг Донецка, Запорожье, Кривого Рога, Никополя; железа, никеля – вокруг Кривого Рога; марганца – в районе Никополя. В общем, по данным того же института, около 20% территории Украины загрязнено тяжелыми металлами.

Во время оценки степени загрязнения тяжелыми металлами используют данные о ПДК и их фоновом содержании в почвах основных природно-климатических зон Украины. В случае установления в почве повышенного содержания нескольких металлов загрязнение оценивают по металлу, содержание которого превышает норматив в наибольшей степени.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: